化工园区地下水多污染物复合动态风险评估研究进展

Research Advances in Dynamic Multi-pollutant Risk Assessment Models for Groundwater in Chemical Industrial Parks

  • 摘要: 化工园区是典型的地下水复合污染热点区, 其高强度储运、复杂生产排放与事故泄漏易发性, 导致污染场具有"高浓度、多组分、强时变"的突出特征, 并对生态系统与公众健康构成显著的叠加风险。地下水污染风险评估框架已历经3次范式跃迁: 由静态浓度阈值法, 发展到多污染物加权评分法, 再到机理-数据融合的动态预测体系。笔者系统梳理化工园区地下水污染物"源-迁移-暴露-效应"链条, 解析水文、地球化学、污染物迁移转化与毒理效应跨尺度耦合模拟的最新进展, 以及机器学习与数字孪生技术在风险治理中的应用新范式。最后, 针对监管落地、数据共享及跨学科融合等问题提出未来发展建议, 以期为化工园区地下水多污染物复合动态风险评估与精准治理提供系统性参考。

     

    Abstract: Chemical industrial parks (CIPs) often exhibit groundwater plumes that are characterized by high concentrations, multicomponent mixtures, and pronounced temporal variability owing to intensive raw-material handling, complex production emissions, and accidental releases. These composite plumes pose cumulative risks to both ecosystem integrity and public health. Over the past two decades, groundwater-risk assessment has undergone three paradigm shifts-from static concentration-based thresholds, through multi-pollutant weighted scoring, to dynamic prediction frameworks that fuse process models with data-driven methods. This review systematically dissects the source-migration-exposure-effect chain of multi-contaminant groundwater in CIPs, summarizes recent advances in cross-scale simulation of coupled hydrological, geochemical, and pollutant migration-transformation as well as ecotoxicological processes, and highlights emerging risk-governance paradigms empowered by machine learning and digital-twin technology. Finally, future directions are proposed for regulatory implementation, data sharing, and interdisciplinary integration, providing a comprehensive reference for dynamic multi-pollutant risk assessment and precision management.

     

/

返回文章
返回