土地利用格局变化对降污增汇的影响研究: 以天目湖流域为例

Impacts of Land Use Pattern Changes on Pollution Reduction and Carbon Sequestration: A Case Study of Tianmu Lake Basin

  • 摘要: 土地利用格局优化对于实现降污增汇、应对气候变暖具有重要作用。选择我国东部湿润气候区人类活动强度较高的天目湖流域为研究区,采用GeoSOS-FLUS与InVEST模型,结合2010和2020年的土地利用数据,阐明2010—2020年土地利用格局变化特征及降污增汇效应,探究自然发展(ND)、生态优先发展(EP)、社会经济优先发展(SEP)和综合发展(CD)4种情景下土地利用变化对降污增汇的影响,并提出土地利用格局优化方案。结果表明:(1)2010—2020年天目湖流域碳储量减少0.26%,氮输出增加5.02%,在经济发展要求下,建设用地和茶园面积增加引起污染加重,但是天目湖流域旅游业不断发展使毛竹林面积增加,降低了碳储量的减少速率。(2)EP和CD情景下碳储量增加且氮输出减少;ND和SEP情景下未实现降污增汇;EP情景降污增汇最好,但退耕还林过多,无法应用于实践;CD情景为综合最优情景,在2030年实现降污0.16%、增汇1.40%。(3)实现降污增汇的土地利用格局优化,应限制建设用地和茶园扩张, 修复矿山开采区域, 增加林地,同时强化综合管控。本研究可为流域生态保护政策制定和土地利用格局优化提供科学参考。

     

    Abstract: Optimizing land use patterns plays a pivotal role in pollution mitigation, carbon sequestration enhancement, and climate change adaptation. This study selects the Tianmu Lake Basin in eastern China—a humid region with intensive anthropogenic disturbances—as the research area. By integrating the GeoSOS-FLUS and InVEST models with land use data from 2010 and 2020, we systematically quantified the spatiotemporal evolution of land use patterns and assessed their coupled effects on pollution reduction and carbon sequestration during 2010-2020. Furthermore, we simulated land use changes under four scenarios: Natural Development (ND), Ecological Priority (EP), Socio-Economic Priority (SEP), and Comprehensive Development (CD), to evaluate their potential impacts on pollution-carbon dynamics. An optimized land use configuration framework was subsequently proposed. Key findings include (1) From 2010 to 2020, the basin experienced a 0.26% decline in carbon storage and a 5.02% increase in nitrogen export. The expansion of construction land and tea plantations, driven by economic demands, intensified pollution pressures. Nevertheless, tourism-driven growth of moso bamboo forests partially offset carbon loss rates. (2) Scenario simulations revealed that EP and CD scenarios achieved synergistic pollution reduction and carbon sequestration, whereas ND and SEP scenarios failed to deliver such benefits. Despite EP's superior environmental performance (e.g., highest carbon sequestration), its impracticality stems from excessive cropland-to-forest conversion. CD emerged as the balanced solution, projecting a 0.16% pollution decrease and 1.40% carbon gain by 2030. (3) Effective land use optimization requires integrated strategies: restricting urban and tea plantation sprawl, rehabilitating degraded mining areas, expanding forest coverage, and coupling these measures with adaptive governance mechanisms.

     

/

返回文章
返回