内蒙古温带荒漠草原地上、地下生物量碳分配格局

    Above- and Below-Ground Biomass Carbon Allocation Pattern in Temperate Desert Steppe of Inner Mongolia, China

    • 摘要: 草原生物量碳的估算往往基于大规模的空间采样,忽略了草原的群落组成和空间差异,可能影响评价结果的准确性。研究选择内蒙古温带荒漠草原10种不同典型群落类型,测定地上、地下生物量碳密度,探讨不同群落类型地上、地下生物量碳分配特征,最后对草原地上、地下生物量进行评估。主要结论如下:(1)温带荒漠草原以35.18×106 hm2的面积,贡献了120.44 Tg的生物量,其中地上生物量15.67 Tg,地下生物量104.78 Tg;(2)温带荒漠草原的平均生物量碳为406.75 g·m-2,其中白刺群落的地下生物量碳最高(921.58±354.29)g·m-2,不同群落的地上生物量碳差异不显著(P>0.05);(3)温带草原的平均根冠比为4.79,其中荒漠草原根冠比较高,为6.69;(4)地下生物量碳沿不同土层的分布特征可分成指数型和抛物线型2类。多根葱、红砂、霸王、戈壁针茅、沙生针茅、冷蒿、中间锦鸡儿以及小叶锦鸡儿等群落属于指数型,其地下生物量碳集中在0~10 cm土层,拟合曲线为指数函数;白刺和梭梭群落属于抛物线型,其地下生物量碳主要分布在0~10和>20~40 cm土层,分布曲线符合二次函数。对草原地上-地下生物量碳开展评估,针对草原不同群落分别作曲线拟合,可以得出更为科学的生物量碳分配数据,为草原生态管理提供有力的理论支持。

       

      Abstract: The estimation of grassland biomass carbon is often based on large-scale spatial sampling, ignoring the community composition and spatial difference of grassland, which may affect the accuracy of assessment results. The object of this research is to reveal the above- and below-ground biomass carbon allocation pattern on community level based on the aboveground biomass (AGB) and belowground biomass (BGB). The results indicate that:(1) The temperate desert steppe contributed 120.44 Tg (1 Tg=1012 g) biomass within an area of 35.18×106 hm2. 15.67 and 104.78 Tg were stored in AGB and BGB, respectively. (2) The average biomass carbon density was 406.75 g·m-2. Nitraria tangutorum community had the highest belowground biomass carbon (BGC)(921.58±354.29) g·m-2, while there were no significant differences in aboveground biomass carbon (AGC) (P>0.05) among communities. (3) The root:shoot ratio in temperate steppe was 4.79, while in temperate desert steppe was 6.69. (4) Distribution of BGC was divided into two types:"exponential function type" and "quadratic function type". Communities of Allium polyrhizum, Reaumuria songarica, Sarcozygium xanthoxylon, Stipa tianschanica, Stipa glareosa, Artemisia frigida, Caragana intermedia and Caragana microphylla were "exponential function type" (BGC were mainly distributed in 0-10 cm depth; the fitting curve is exponential function). Communities of Nitraria tangutorum and Haloxylon ammodendron were "quadratic function type" (BGC were mainly distributed in the depth of 0-10 and 20-40 cm; the fitting curve is quadratic function). Evaluation of grassland biomass carbon storage by different grassland communities is meaningful for understanding carbon storage dynamics and providing a theory to support natural grassland management and research in northern China.

       

    /

    返回文章
    返回